KEEP-NUT®
PRESS IN SELF-ANCHORING THREAD INSERTS

KEEP-NUT® is a revolutionary press-in insert with mechanical anchoring to create threaded seats on panels, even thin, made of marble, granite or other stone materials, and moreover on composite, carbon, Corian®, HPL, glass and others solid surfaces.

KEEP-NUT® is manufactured in stainless steel and it’s made of a threaded bush with a set of elastic crowns and a plastic ring for holding the complete set of parts.

APPLICATIONS
Ventilated facades, wall-coverings, décor and interiors, furniture, kitchen and sanitary elements, funerary art, etc.

CODE
IM1S/_ _/H5
IM2S/_ _/H6
IM4S/_ _/H8.5
IM4S/_ _/H15

SERIES
IM1T/_ _/H5
IM2T/_ _ _/H6
IM4T/_ _/H8.5

* V
*** Reference to

SERIE Keep-Nut

PRESS IN SELF-ANCHORING APPLICATIONS
Marble, granite, Corian®, HPL, glass and other compact materials.

ASSEMBLE
By pressurizing the components together.

ADVANTAGES
1 crown type

410 Pike Road • Huntingdon Valley, PA 19006
www.chemical-concepts.com • 800-220-1966
KEEP-NUT™ is a revolutionary press-in insert with mechanical anchoring to create a threaded attachment on panels made of marble, granite or other stone materials, as well as on composites, Corian®, HPL, glass and other compact materials.

KEEP-NUT™ anchors are made of stainless steel and consist of a threaded bushing with a set of flexible metal spines and a plastic ring for retaining the complete assembly.

APPLICATION
Undermount sinks, ventilated facades, wall-coverings, décor and interiors, furniture, kitchen and sanitary elements, funerary art, etc. Marble, granite and stone materials, furniture, kitchen and sanitary elements, funerary art, etc. Marble, granite and stone materials as well as on composites, carbon, Corian®, HPL, glass and other compact materials.

ASSEMBLY
By pressure.

SERIES IM
CODE

<table>
<thead>
<tr>
<th>Code</th>
<th>Min. thicknesses</th>
<th>Thread</th>
<th>Thread length</th>
<th>Hole diameter</th>
<th>Hole depth</th>
<th>Crowns number</th>
<th>Average assembly press-in force*</th>
<th>Average pull-out strength *</th>
</tr>
</thead>
<tbody>
<tr>
<td>IM1S/._/H5</td>
<td>8</td>
<td>M 4</td>
<td>4,5</td>
<td>12</td>
<td>5,5</td>
<td>1</td>
<td>0,2</td>
<td>0,9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>M 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IM2S/._/H6</td>
<td>8.5</td>
<td>M 4</td>
<td>5,5</td>
<td>12</td>
<td>6,5</td>
<td>2</td>
<td>0,4</td>
<td>2,5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>M 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IM4S/._/H8.5</td>
<td>11</td>
<td>M 4</td>
<td>7,5</td>
<td>12</td>
<td>9</td>
<td>4</td>
<td>1</td>
<td>3,5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>M 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IM4S/._/H15</td>
<td>17,5</td>
<td>M 6</td>
<td>14</td>
<td>12</td>
<td>15,5</td>
<td>4</td>
<td>1</td>
<td>4,2</td>
</tr>
</tbody>
</table>

SERIES IM (with flange)

<table>
<thead>
<tr>
<th>CODE</th>
<th>Min. thicknesses</th>
<th>Thread</th>
<th>Thread length</th>
<th>Hole diameter</th>
<th>Hole depth</th>
<th>Crowns number</th>
<th>Average assembly press-in force*</th>
<th>Average pull-out strength *</th>
</tr>
</thead>
<tbody>
<tr>
<td>IM1T/._/H5</td>
<td>7</td>
<td>M 4</td>
<td>4,5</td>
<td>12</td>
<td>4,5</td>
<td>1</td>
<td>0,2</td>
<td>0,5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>M 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IM2T/._/H6</td>
<td>7,5</td>
<td>M 4</td>
<td>5,5</td>
<td>12</td>
<td>5,5</td>
<td>2</td>
<td>0,4</td>
<td>1,7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>M 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IM4T/._/H8.5</td>
<td>10</td>
<td>M 4</td>
<td>7,5</td>
<td>12</td>
<td>8</td>
<td>4</td>
<td>1</td>
<td>2,9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>M 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Values reported above are indicative and not binding as results from laboratory tests that might not be repeatable in different conditions.

** S value is variable and related to the characteristics of the receiving material. It is recommended to perform assembly test to define the correct value.

*** Reference to be completed by thread d1.

Other thread sizes and materials available on demand
Non binding dimensions, expressed in mm.
ADVANTAGES

1. Cylindrical hole easy to be drilled, also executable work in progress with standard tools.

2. Quick assembly by pressure.

3. No needs for resins or adhesives.

4. Allows an internal assembly without any external dimensions, facilitating the handling and storage of the panels.

5. No tensile force on the receiving material when the insert is not pulled out.

6. On use, the elastic crowns are solicited by an axial force, acting radially against the hole walls due to the bending and pressure, avoiding the leakage of the system.

7. The “not through” threading of the internal bush, assures fastening without the extraction effect due to the possible exceeding length of the screw.

KEEP-NUT® ASSEMBLY BY PRESSURE

1. Prepare the hole in the receiving material.

2. Check the correct hole size with the Go/No Go gauge. On the Go side of the gauge there are reference marks to check the correct hole depth.

3. For a correct installation screw completely the insert on the threaded mandrel. Execute the installation by pressure.

4. The insert is ready for the assembling.

5. The insert is structurally fastened and assembled.

For a proper assembly it is recommended to screw the pin on the total length of the useful thread and that the element to be fixed is in contact with the internal metal bush of the insert Keep-Nut®.
APPLICATIONS

Can support up to 562 lbs of pressure.

KEEP-NUT™

Keep-nut 11.8 1/2 Gas CNC set up info:
- Hole Diameter 12mm (+/- .2mm) • Bit Diameter 11.8 mm
- Depth: 6.5mm (.26")
- RPM 3500
- Feed rate 1.5 in./min.
- Anchor placement: (approx. 2" from cut out on center)

Drawings and graphical representations are made solely to illustrate the product and are purely indicative. Therefore data can differ from what is shown in relation to the type of application and material used.