Shin-Etsu Silicone Products Guide Highly Functional Silicone Products Lineup

Chemical™

Concepts

chemical-concepts.com

800.220.1966

410 Pike Road • Huntingdon Valley, PA 19006

expertise is your solution.

Flexible Silicone Conductive PasteUV Cure RIV Silicone RubbersRadical Polymerization Type
Temporary Adhesive SiliconesLow Elasticity RTV Silicone RubbersPolyimide Silicone PrimersSilicone Gel for Protecting ElectrodesConductive Polyimide Silicone Silver PasteHigh Hardness Die Bond MaterialsVisible Light Shielding Silicone EncapsulantsOne-component Addition Cure Type

RTV Silicone Rubber High Strength Elastic Adhesive

Shin-Etsu Silicone Makes Various Devices More Reliable and Expands Product Design Potential.

Contents

Features of Silicone	3
Flexible Silicone Cunductive Paste	1
UV Cure RTV Silicone Rubbers — Three Cure Types—	5
Radical Polymerization Type RTV Silicone Rubbers KER-43XX-UV Series	7
UV Addition Type RTV Silicone Rubbers	3
UV Addition Type Optical Bonding Silicones LOCA	9
Radical Polymerization Type Temporary Adhesive Silicones)
Application Examples in Various Devices	
Low Elasticity RTV Silicone Rubbers	2
Polyimide Silicone Primers 12	1
Silicone Gel for Protecting Electrodes	5
Functional RTV Silicone Rubbers	7
Conductive Polyimide Silicone Silver Paste	7
High Hardness Die Bond Materials	7
Visible Light Shielding Silicone Encapsulants	3
One-component Addition Cure Type RTV Silicone Rubber	9

Features of Silicone

Silicones have an amazing array of properties.

Silicones consist of a main chain of inorganic siloxane linkages (Si-O-Si) plus side chains which contain organic groups. Silicones are hybrid polymers that contain both inorganic and organic components.

The main chain of a silicone consists of siloxane linkages which are stable and have a high bonding energy.

Compared to organic polymers, which have a carbon backbone (C-C/bonding energy: 85 kcal/mol), silicones have superior heat resistance and weatherability (UV light, ozone). This is due to the greater stability of siloxane bonds, which have a bonding energy of 106 kcal/mol.

With their long bond length and high bond angle, siloxane bonds have weak intermolecular forces and move freely.

Siloxane bonds have a bond length of 1.64 Å and bond angle of 134°. Compared to carbon bonds (bond distance: 1.54 Å, bond angle: 110°), they have a long bond distance, high bond angle, and a low rotational energy barrier. As a result, siloxane bonds move more freely and intermolecular forces are weak. These characteristics manifest themselves in features of the silicone material, including softness, gas permeability, cold resistance, and small changes in viscosity due to temperature changes.

The molecules of silicone polymers are covered by hydrophobic methyl groups, and surface energy is low.

The backbone of a silicone polymer molecule is a twisted helical structure. The molecules are almost completely covered by hydrophobic methyl groups, and surface energy is low. This gives rise to unique properties including water repellency and easy release.

Furthermore, silicones are low-polarity polymers so they exhibit low moisture absorption.

Features attributable to siloxane linkages Features attributable to molecular structure Organic groups Inorganic material (siloxane bonds) Organic groups Water repellency Heat resistance Weatherability Si-O bonds 106kcal/mol Helical (spiral) structure Release properties Flame resistance Radiation resistance C-C bonds 85kcal/mol Intermolecular forces Cold resistance C-O bonds 76kcal/mol Chemical stability Electrical properties are weak Compression characteristics

Silicones: compounds which feature a main chain of siloxane bonds

Flexible Silicone Conductive Paste

SCP-101

Features

- Excellent elasticity and consistent bending properties after curing
- Circuit formation by screen printing is possible.
- UV irradiation + room-temperature or heat curing is possible.
- Excellent adhesion to silicone rubber base material

Application Examples

Circuit formation conductive paste for flexible packages

General Properties

Product name Parameter	SCP-101				
Appearance	Grayisl	n white			
Viscosity at 23°C 10 [1/s] Pa·s	4	1			
Viscosity at 23°C 2 [1/s] Pa·s	105				
Storage temperature	≦0°C				
Standard curing conditions	Metal halide lamp 6,000mJ+23℃×12h	120℃×1h			
Density at 23°C g/cm ³	NA ^{**1}	5.34**2			
Hardness Durometer A	NA ^{**1}	10*2			
Tensile strength MPa	NA ^{**1}	0.3**2			
Elongation at break %	NA ^{**1}	65 ^{**2}			
Thermal conductivity W/mk	NA*1 3.2*2				
Adhesion (cross cut adhesion test) silicone rubber	100/100	100/100			

%1 Rubebr thickness: 0.08 mm, not measurable due to thin film

%2 Rubber thickness 1.0 mm

(Not specified values)

Volume Resistivity Data

Standard curing conditions		Metal-halide lamp 6,000mJ+23℃×12h	120℃×1h	
Initial	Ω-cm	Not measurable (Immediately after UV irradiation)	2×10^{-4} (After heat curing)	
After 12 h at 23°C	Ω-cm	4 ×10 ⁻⁴	-	

(Not specified values)

Durability Test Data

Durability Test	Initial	500 h	1,000 h	
After high temperature exposure (120°C)	Ω-cm	4× 10 ⁻⁴	1×10 ⁻⁴	2×10 ⁻⁴
After high temperature and humidity exposure(85°C/85% RH)	Ω-cm	4× 10 ⁻⁴	8× 10 ⁻⁵	5×10 ⁻⁵

* Test samples prepared under the conditions of 6,000mJ + 23° C × 12 h by metal halide lamp

(Not specified values)

Stretchability Test Data

Substrate: KE-106 (high strength silicone rubber) Thickness: 1.0 mm SCP-101: 5.0 mm \times 60.0 mm Thickness: 0.04 mm

Volume resistivity change during elongation

Cure conditions	Elongation rate: 10%	Elongation rate: 20%	
UV cure	4 times	17 times	
Heat cure	9 times	50 times	

Circuit Formation by Screen Printing

Substrate: KE-106 (high strength silicone rubber) Thickness: 1.0 mm Silver paste Thickness: 0.04 mm Overcoat material (silicone rubber) Thickness: 1.0 mm

Circuit formation example

Excellent flexibility

UV Cure RTV Silicone Rubbers

Three Cure Types

Shin-Etsu offers a wide variety of UV cure RTV silicone rubbers, including a fast curing radical-polymerization type, a UV addition type that is irradiated with UV light and then cures fully at room temperature or with heating, and a combination of radical and condensation types that cures via condensation reaction in sections where the UV rays can't reach. Therefore, it is possible to select an appropriate curing type depending on the usage and application.

■ Types and features of UV cure RTV silicone rubbers

Type Parameter		Radical Polymerization	UV Addition	Combination of Radical and Condensation	
Features		Rapid cure, Low to high hardness Both silicone and polyimide silicone availableParts can be laminated after UV irradiation (process reversal). Ultra-low shrinkage with room-temperature curing Shortened cure time with 		Cures by condensation reaction in sections where UV light won't reach	
By-product		_	-	Alcohol or acetone	
	UV	Rapid Slow		Rapid	
Curability	Heating	NA	Room temperature to 80°C×1 h	NA	
	Moisture	NA	NA	> 1 day *1	
	Oxygen	Inhibits curing	No effect	Inhibits curing *2	
Cure inhibition	S•N•P compound	No effect	Inhibits curing	No effect	
	Acids, alcohols, etc.	No effect	Inhibits curing	Inhibits curing	

*1 The time required for curing depends on the thickness.

For curing properties of condensation reaction type, please refer to the catalog of RTV silicone rubbers for electrical & electronic applications. *2 Oxygen-inhibited areas are cured by condensation reaction.

Radical Polymerization Type RTV Silicone Rubbers

KER-43XX-UV Series

Features

- Processing time shortened by UV irradiation.
 - After curing, it becomes a flexible elastomer and reduces stress.
- Low cure shrinkage optimal for securing precision parts <0.1%
- Excellent heat resistance and durability for hygroscopic reflow mounting

Application Examples

• Fixing of sensors and precision glass components

General Properties

Product name Parameter		KER-4301-UV	KER-4302-UV	KER-4303-UV	KER-4304-UV	KER-4320-UV
Brief description		Transparent, flowable	Transparent, thixotropic	Resistant to oxygen inhibition hygroscopic reflow resistance flowable	Resistant to oxygen inhibition hygroscopic reflow resistance thixotropic	Hygroscopic reflow resistance thixotropic
Reaction mechan	ism	Radical	Radical	Radical	Radical	Radical
Appearance		Colorless transparent	Colorless transparent	Yellow transparent	Yellow transparent	Yellow transparent
Viscosity	mPa•s	7,000	20,900	5,500	20,400	15,000
Refractive index		1.44	1.44	1.44	1.44	1.44
	UV light source			Metal halide lamp		
Standard curing	Illuminance* mW/cm ²	100	100	100	100	100
conditions	Irradiation time s	40	40	40	40	40
	Estimated light intensity mJ/cm ²	4,000	4,000	4,000	4,000	4,000
Density at 23°C g/cm ³		1.10	1.13	1.10	1.12	1.13
Hardness	Durometer A	41	54	41	56	16
Tensile strength	MPa	4.0	4.0	2.6	3.8	2.1
Elongation at bro	eak %	110	100	100	80	320
Tensile lap-shear str	rength (glass/glass) t=460 μm MPa	1.2	1.3	0.9	1.2	0.9(t=80µm)
Cure shrinkage	%	< 0.1	< 0.1	< 0.1	< 0.1	_
Light transmissiv	vity 400 nm/2.0 mm %	90	81	39	34	_
Moisture transmis	sivity 40°C×24 h/1.3 mm g/cm ²	46.6	46.6	52	46.1	51.8
LED-UV (365nm)	applicability	0	0	0	0	0
Atmospheric air	cure	×	×	0	0	×
Refrigeration sto	orage	Unnecessary	Unnecessary	Unnecessary	Unnecessary	Unnecessary

*Illuminance at 365 nm

UV Addition Type RTV Silicone Rubbers

Features

- Step cure: 3,000mJ/cm² + 23°C×24h %Recommended light source: UV-LED(365nm)
- Parts can be fixed and laminated after UV irradiation. (Process reversal is possible.)
- Ultra-low shrinkage with room-temperature curing
- Cure time can be shortened by low-temperature heating

Application Examples

• Fixing of sensors and precision glass parts

General Properties

Product name Parameter		KER-4410	KER-4510	KER-4690-A/B	KER-4691-A/B
Brief description		Adhesion, room-temperature curing possible	Adhesion, low-temperature curing	Non-adhesive, high-definition transfer	Non-adhesive, high-definition transfer
Reaction mechani	sm	Addition	Addition	Addition	Addition
Appearance		Colorless slightly cloudy	Colorless slightly cloudy	Colorless transparent	Colorless transparent
Viscosity	mPa•	59,000	30,000	3,000	80,000
	UV light source		UV-LED	(365nm)	
Recommended	Illuminance mW/cr	2 100	100	100	100
curing conditions	Irradiation time se	30	30	30	30
	Estimated light intensity mJ/cr	² 3,000	3,000	3,000	3,000
Curing conditions	after UV irradiation	80℃×1h or 23℃×24h	60℃×1h	23℃×24h	23℃×24h
Density at 23°C g/cm ³		3 1.06	1.04	1.03	1.09
Hardness	Durometer	15	50	56	42
Tensile strength	MP	a 2.3	6.6	7.9	6.2
Elongation at bre	ak	350	530	110	420
Tensile lap-shear strength MPa		1.6 (AL/AL) 1.7 (PBT/PBT) 1.4 (PPS/PPS)	2.2(GL/GL)	NA	NA
Light transmissivi	ty 400 nm, t=2.0 mm	6 NA	87	90	NA
Cure shrinkage		<u> </u>	_	< 0.1	< 0.1
Atmospheric air c	ure	0	0	0	0
Refrigeration stor	rage	Necessary	Necessary	Unnecessary	Unnecessary

(Not specified values)

Curability of the KER-4410

Adhesion of the KER-4410

UV Addition Type Optical Bonding Silicones

LOCA = Liquid Optical Clear Adhesive

Features

- One-component so mixing is unnecessary.
- Step cure: 3,000mJ/cm² + 23°C×24h *Recommended light source: UV-LED(365nm)
- Curing time can be adjusted by changing UV irradiation conditions.
- Low risk of color unevenness and heat resistance to discoloration is excellent.
- Lamination after UV irradiation is possible due to process reversibility of UV addition cure type.
- LOCA curability can be ensured, even in areas not irradiated with UV rays.

Application Examples

Touch panel lamination

Lamination process using the "delayed curing" property of the UV addition type

Point

The use of the UV addition (delayed curing) type makes it possible to irradiate the material first and then laminate the pieces.This ensures the LOCA curability even in areas not irradiated with UV rays

General Properties

Product name Parameter		KER-4530	KER-4551	KER-4531	KER-4532	KER-4580			
Brief description Low viscosity, gel Medium viscosity, gel Medium viscosity, gel High viscosity, gel Thiv					Thixotropic, gel				
Reaction mechani	ism			Addition	Addition	Addition	Addition	Addition	
Appearance				Colorless transparent	Colorless transparent	Colorless transparent	Colorless transparent	Colorless slightly cloudy	
Viscosity			mPa∙s	4,000	10,000	25,000	95,000	4,000	
Refractive index				1.41	1.40	1.41	1.41	1.44	
	UV ligh	it source				UV-LED (365nm)			
Recommended	Illumina	ance	mW/cm ²	100	100	100	100	100	
curing conditions	Irradia	tion time	S	30	30	30	30	15	
	Estimate	ed light intensity	mJ/cm ²	3,000	3,000	3,000	3,000	1,500	
Curing conditions after UV irradiation				23°C×24h					
Density at 23°C g/cm ³			0.97	0.97	0.97	0.97	1.04		
Hardnocc	1	Durometer A		5	NA	NA	NA	NA	
naiuness	1	Penetration		NA	30	30	35	37	
Tensile strength			MPa	0.3	NA	NA	NA	0.2	
Elongation at bre	eak		%	550	1,200	NA	NA	660	
Cross adhesion s	trength		MPa	0.5	0.3	0.3	0.3	0.4	
Light transmissivity 400 nm, t=310µm %			%	> 99	> 99	> 99	> 99	> 99	
LED-UV (365nm) a	applicabi	ility		0	0	0	0	0	
Atmospheric air c	cure			0	0	0	0	0	
Refrigeration stor	rage			Necessary	Necessary	Necessary	Necessary	Necessary	

Featuress

- Various levels of adhesion and hardness are available.
- They have stable adhesion and resilience (excellent repeat durability).
- Excellent adhesive strength after high-temperature exposure

Application Examples

• Temporary adhesive silicone pad for transfer of microelectronic components

Application Examples

Parameter	Product name	STP-102-UV	STP-103-UV	STP-104-UV	STP-106T-UV
Brief description	I	Medium sticky force	Low sticky force, ultra low viscosity	Low sticky force	Low sticky force, thixotropic
Reaction mechan	ism	Radical	Radical	Radical	Radical
Appearance		Pale yellow transparent	Pale yellow transparent	Pale yellow transparent	Pale yellow translucent
Viscosity	mPa∙s	1,650	170	290	250,000
	UV light source		UV-LED (3	365nm)*	
Recommended	Illuminance mW/cm ²	100	100	100	100
curing conditions	Irradiation time s	80	80	80	80
	Estimated light intensity mJ/cm ²	8,000	8,000	8,000	8,000
Density at 23°C	g/cm³	1.08	1.05	1.08	1.14
Hardness	Durometer A	24	28	37	33
Tensile strength	МРа	2.8	2.8	4.1	1.9
Elongation at br	eak %	250	210	240	170
Sticky force 200 mm/min MPa		1.30	0.62	2.07	0.40
Tensile lap-shear str	ength (glass/glass) t = 230 μm MPa	8.5	7.0	10.8	5.9
Atmospheric air	cure	×	×	×	×
Refrigeration sto	orage	Unnecessary	Unnecessary	Unnecessary	Unnecessary

*When cured with a high-pressure mercury lamp, no adhesive strength develops.

Adhesion measurement method

Testing method

The tip of the probe is pressed against the sample of silicone with a force of 1.0 MPa for 15 seconds. The probe is then peeled off at a rate of 200mm/min. taken to pull a part the probe from material sample. Surface area of the probe (that makes contact with material sample) needs to be calculated by unit area and this value is the sticky force. Sticky force is derived from the maximum strength.

Transcriptional properties of the STP series

Sticky force of STP-103-UV after leaving at high temperature

Fine irregularities are formed on a Si wafer.

Fluorinated mold release agent applied

Apply STP Series on Si Wafer Remove air bubbles from fine holes by evacuation. Cure by UV irradiation (8,000mJ/cm²)

Remove the STP series from the Si wafer

Application Examples in Various Devices

Four possible uses in response to demand for smaller and more accurate devices, ICs, and MEMS chip

O Stress Relaxation Countermeasures in Electrode-protecting Materials for MEMS Chip

③ Water Proof / Static Electricity Countermeasures for Lid Sealing Materials

4 Stress Relaxation / Peel Countermeasures in Primers for Epoxy Molding Resins

Low Elasticity RTV Silicone Rubbers

Features

- Rubber elasticity remains consistent from -60°C to +200°C.
- Consistent application reproducibility can contribute to improved chip mounting accuracy.
- Products available in different viscosities for a variety of packaging formats.
- Syringe packaging available for small-volume projects.

Application Examples

 MEMS such as pressure sensors and MEMS microphones, ASIC die bonding materials, wires, and coating materials for electrodes

Precision application is possible using a jet dispenser.

General Properties

Product name Parameter	KER-6020-F	KER-6020-F1	KER-6020-F2	KER-2601BK	KER-2601BK-L	KER-6230-F	FER-3850-D1
Brief description	Cold resistant Low hardness	Cold resistance Low hardness	Cold resistance Low hardness	Black color Noise countermeasure	Black color Noise countermeasure	Ultra-low hardness	0il resistance
Appearance	Creamy white translucent	Creamy white translucent	Creamy white translucent	Black color	Black color	Creamy white translucent	White
Viscosity at 23°C Pa•s	23	69	100	25	16	33	65
Thixo ratio (BH7-10/20)	1.3	1.5	1.6	1.8	1.1	-	-
Storage temperature	≦10°C	≦10°C	≦10°C	≦10°C	≦10°C	≦10°C	≦10°C
Standard curing conditions	150℃×1h	150℃×1h	150℃×1h	150℃×2h	150℃×2h	130℃×30min	120℃×1h
Density at 23°C g/cm ³	1.06	1.07	1.09	1.05	1.04	1.04	1.41
Hardness Durometer A	20	26	31	46	45	40 (Penetration)	24
Elongation at break %	220	230	200	120	210	-	230
Tensile strength MPa	1.1	1.8	1.7	4.3	5.7	-	0.4
Tensile lap-shear strength MPa	0.3	0.8	1	1	3.1	-	1.5
Die share strength (Si/Ag) MPa	3.2 (Si 1mm²□)	3.9 (Si 1mm²□)	5.3 (Si 1mm ²)	-	-	-	-
Coefficient of linear expansion at 23°C ppm/°C	480	400	360	-	-	400	310
Modulus of elasticity MPa	0.7	1.1	1.4	-	-	-	-
Volume resistivity TΩ·m	53.9	47.7	35.5	8.3×10³	1.8×10⁴	3	-
Dielectric breakdown strength kV/mm	25	29	26	-	-	20	-
Relative permittivity 50 Hz	2.9	2.9	3.1	-	-	3	-
Dielectric dissipation factor 50 Hz	4.9×10 ⁻⁴	5.8×10 ⁻⁴	6.8×10 ⁻⁴	-	-	5×10 ⁻⁴	-

Temperature dependence of elastic modulus

Application of UV Addition Cure Type RTV Silicone Rubbers to Die Bonding Material

By UV irradiating before die mounting, materials will cure at room temperature after mounting, therefore eliminating the need for heating.

Potential benefits

- **1** Prevention of misalignment of the tip during heating
- Reducing stress on the chip
- ③ It is also possible to shorten the curing time by low-temperature heating.
- Processes

Polyimide Silicone Primers

KER-44XX Series

Features

- Excellent adhesion to epoxy molding resins and metal frames
- Products available in different viscosities for a variety of packaging formats
- Low-temperature curing type at 150°C
- Cures to become an elastic film. Can be effective as a stress-relieving layer.

Application Examples

• ICs in power & logic circuits, capacitors, sensors, thermistors, etc.

Instructions for Use

• Apply using jetting system, pressurized dispenser, spraying, dipping, etc.

Silicone layer between the chip and the epoxy relieves stress.

Evaluating Adhesion to Lead Frames & Epoxy Molding Resins

Hygroscopic reflow test (MSL-1) : 85°C / 85%RH×168h ⇒ Reflow cycle performed 3 times
 Package : TO-247 (substrates: AMB Cu-SiN, chips: SiC-SBD)

Appearance		Before testing	After testing			
Conditions		SAT results	SAT results	SEM images of cross sections		
	Treated with SMP-5008PGMEA			NAD		
Untreated				Peel-off		

●Thermal cycle test : -40°C⇔175°C × 1,000cycle ●Packages: TO-247 (substrates: AMB Cu-Sin, chips: SiC-SBD)

Appearance	Before testing	After testing
Conditions	SAT results	SAT results
Treated with SMP-5008PGMEA		8
Untreated	NAD	Peel-off

General Properties

Paran	Pro	oduct name	SMP-5008PGMEA	SMP-5008PGMEA-M1	SMP-5008PGMEA-M3
	Appearance		Dark brown		
ing	Viscosity at 25℃	Pa•s	0.3	1.0	3.0
ore cui	Nonvolatile content 105° × 3 h	wt%	30	32.7	33.5
Befc	Specific gravity at 25℃		1.03	1.03	1.03
	Solvent		Propyle	ene glycol monomethyl ether a	acetate
Stand	Standard curing conditions		50	°C×30min+100°C×1h+150°C×	2h
	Tensile strength	MPa	20	13	14
	Elongation at break	%	360	290	290
	5% weight loss temperature	Ĉ	360	420	380
	Modulus of elasticity at 25°C	MPa	200	100	150
ы В Ц	Tg	°	120	90	98
		ppm	200	250	242
		TΩ·m	45	58	71
		V/mm	14	14	14
		_ 0 ×	2.5	2.4	2.8
			3.4 × 10 ⁻³	3.2 × 10 ⁻³	3.2 × 10 ⁻³
			< 0.1	< 0.1	< 0.1

(Not specified values)

A 如 10 m 40 (3) CAPS 47 (1) (1) (21:15)

2

Silicone Gel for Protecting Electrodes

Features

- Gel state remains consistent from -60°C to +150°C.
- Consistent, precise application using a dispensing or jetting system.
- Solves a variety of issues related to waterproofing specifications of pressure sensors, etc.

Application Examples

- Electrodes such as pressure sensors
- Wire protection

General Properties

Paran	Product name	FE-74	FE-73-BK	FE-78-A/B
Brief description		Oil and solvent resistance	Black color, oil and solvent resistance	Two-component, oil and solvent resistance
	Appearance	Colorless slightly cloudy	Black color	A/B: colorless transparent
uring	Viscosity at 23°C Pa·s	0.7	2.5	A:0.8 B:0.6
ore cl	Mixed viscosity at 23°C Pa·s	-	-	0.7
Bef	Specific gravity at 25℃	1.21	1.28	A/B: 1.22
	Storage temperature	-10℃ ~ 10℃	-10℃ ~ 10℃	0°C ~ 30°C
Standard curing conditions		125℃ × 2h	125℃ × 2h	100℃ × 2h
	Penetration 1/4 cone	90	65	65
	Volume resistivity TΩ·m	0.02	0.02	0.005
uring	Dielectric breakdown strength kV/mm	14	14	14
fter c	Relative permittivity 50 Hz	7.0	7.0	7.0
∢	Dielectric dissipation factor 50 Hz	1 × 10 ⁻¹	2 × 10 ⁻¹	1 × 10 ⁻²
	Complex shear modulus 10 Hz Pa	1,200	6,000	13,000

Product name Parameter		KER-6201	KER-6201-BK	KER-2201
Brief description		Cold resistance	Black color, cold resistance	Excellent defoaming property
ы В Ц	Appearance	Colorless slightly cloudy	Black color	Colorless transparent
e curi	Viscosity at 23°C Pa·s	0.8	0.8	0.8
Before	Specific gravity at 25°C	0.98	0.98	0.97
	Storage temperature	-10°C ~ 10°C	-10°C ~ 10°C	-10°C ~ 10°C
Standard curing conditions		100℃ × 2h	100℃ × 2h	100℃ × 2h
	Penetration 1/4 cone	90	90	65
	Volume resistivity TΩ•m	8.0	2.0	10
uring	Dielectric breakdown strength kV/mm	14	14	14
fter c	Relative permittivity 50 Hz	3.0	2.8	3.0
A	Dielectric dissipation factor 50 Hz	5 × 10 ⁻⁴	3 × 10 ⁻⁴	5 × 10 ⁻⁴
	Complex shear modulus 10 Hz Pa	2,200	2,200	2,000

Functional RTV Silicone Rubbers

Conductive Polyimide Silicone Silver Paste

Features

- SMP-2840 is a conductive polyimide silicone silver paste that combines polyimide and RTV silicone rubbers.
- Excellent crack resistance to heat cycle test and moisture absorption reflow resistance.

Application Examples

- Lid seal for preventing static electricity in the sensor module
- Conductive die bond for LED devices

General Properties

Parameter Product name		SMP-2840
Brief description		Excellent crack resistance
	Appearance	Gray
മ	Viscosity at 23°C Pa•s	30
curi	Nonvolatile content (volume ratio) Wt %	86 (50)
fore	Solvent	Polyethylene glycol dimethyl ether
Bei	Density at 23°C g/cm ³	3.4
	Storage temperature	-40℃ ~ -20℃
Standard curing conditions		100℃ × 2h + 150℃ × 1h
	Density at 23℃ g/cm³	5.6
	Tg ℃	185
ring	Coefficient of linear expansion $(\alpha 1/\alpha 2) \text{ ppm/°C}$	40 / 160
er cu	Volume resistivity Ω·cm	5.8 × 10 ⁻⁵
Afte	Thermal conductivity W/m·K	1.0
	Thermal resistance (BLT) mm ² ·K/W	8 (7µm)
	Die share strength (Si /Ag) MPa	23.6 (Si 1mm²_)

Precautions

(Not specified values)

•Silver filler may settle during storage. Please be sure to stir thoroughly before use.

 \blacksquare Please use in an environment at 23°C or higher.

High Hardness Die Bond Materials

Features

 RTV silicone rubber high hardness die bond material with high die shear strength

Application Examples

- Die bonding of LED devices
- Fixing of the sensor chip

General Properties

Parameter Product name	KER-3000-M2	SCR-3400-S7	KER-3201-T3	KER-4033-D2
Brief description	High hardness	High strength	Thermal conductivity	Cure inhibition countermeasure
Appearance	Creamy white translucent	Creamy white translucent	White	Pale yellow translucent
Viscosity at 23°C Pa•s	40	7	24	16
Storage temperature	≦10°C	≦10℃	≦10°C	≦10°C
Standard curing conditions		150℃	C×2h	
Density at 23℃ g/cm³	1.15	1.16	2.35	1.16
Hardness Shore D	56	78	71	72
Tensile lap-shear strength (Al/Al) MPa	3.9	9.6	3.9	_
Die share strength Ag / 🗌 33mil 🛛 MPa	15.7	28	20.2	29.3
Thermal conductivity W/m·K	0.2	0.2	1.36	0.2
Glass transition temperature °C	-123	80	-123	-123

Visible Light Shielding Silicone Encapsulants

Features

- Shields light up to 650nm but allows light over 700nm to be transmitted.
- Based on silicone polymers and exhibits high reliability
- Hardness that can be diced after curing but has high extensibility

Application Examples

In-vehicle IR sensors, etc.

General Properties

Product name Parameter	AIR-7051-A/B	AIR-7052F-A/B	AIR-7070-A/B
Features	Standard product	Improved heat resistance	High hardness
Appearance	A: Black B: colorless transparent	A: Black B: colorless transparent	A: Black B: colorless transparent
Viscosity mPa•s	A=14,000 B=20	A=36,000 B=20	A=24,000 B=30
Proportional combination		A:B=1:1	
Mixed viscosity mPa•s	160	400	300
Standard curing conditions		100ºC×1h + 150ºC×4h	
Hardness Durometer D	45	54	73
Elongation at break %	220	200	5
Tensile lap-shear strength (Al/Al) MPa	3.9	7.4	3.1
Tensile lap-shear strength (Glass epoxy/Glass epoxy) MPa	4.7	7.1	3.7
Glass transition temperature C	33	40	30
Please store the AIR-7051-A AIR-7052 F-A and AIR-7070-A at 0°C to 10°C (Not specified values)			

*Please store the AIR-7051-A, AIR-7052 F-A, and AIR-7070-A at 0°C to 10°C.

Instructions for Use

- 1 Dispense application to the package
- **2** Transfer molding

Photo: Microlens by transfer molding

AIR series light transmittance data

After 150°C durability test (AIR-7051)

One-component Addition Cure Type RTV Silicone Rubber High Strength Elastic Adhesive

KE-8100

Higher adhesion strength than conventional products

Features

- Tensile lap-shear strength: 4.0MPa Tested substrates: Aluminum, PBT, and PPS
- Easy-to-handle one-component type (refrigerated storage required)
- Excellent performance unique to silicone, such as heat resistance, cold resistance, weatherability, and electrical insulation, remains unchanged.
- Operating temperature range -40°C to 150°C
- Standard curing conditions: 120°C × 1 h

Solutions to Customers

General Properties

Product name Parameter	KE-8100		
Curing method	Addition		
Before curing			
Appearance	Gray		
Viscosity at 23°C Pa·s	120		
Standard curing conditions	120℃×1 h		
After curing			
Density at 23°C	1.31		
Hardness Durometer A	77		
Tensile strength MPa	7.1		

(Not specified values)

Tensile Lap-shear Strength Test Data

Product name Substrate	KE-8100	Conventional product KE-1835S
Aluminum/Aluminum	4.1	3.0
PBT/PBT	4.0	2.6
PPS/PPS	4.0	2.4

(Not specified values)

Test Method of tensile lap shear strength The RTV silicone rubber is applied as shown in the figure. After curing,

shear adhesion is measured using a tension tester.

Silicone Division Sales and Marketing Department ${ m I\!N}$

6-1, Ohtemachi 2-chome, Chiyoda-ku, Tokyo, Japan Phone : +81-(0)3-3246-5152 Fax : +81-(0)3-3246-5362

Shin-Etsu Silicones of America, Inc.

1150 Damar Drive, Akron, OH 44305, U.S.A. Phone : +1-330-630-9860 Fax : +1-330-630-9855

Shin-Etsu do Brasil Representação de Produtos Químicos Ltda.

Rua Coronel Oscar Porto, 736 11° Andar - 114/115 Paraíso São Paulo - SP Brasil CEP: 04003-003 Phone : +55-11-3939-0690 Fax : +55-11-3052-3904

Shin-Etsu Silicones Europe B.V.

Bolderweg 32, 1332 AV, Almere, The Netherlands Phone : +31-(0)36-5493170 Fax : +31-(0)36-5326459 (Products & Services: Fluid products)

Germany Branch

Rheingaustrasse 190-196, 65203 Wiesbaden, Germany Phone : +49-(0)611-962-5366 Fax : +49-(0)611-962-9266 (Products & Services: Elastomer products)

Shin-Etsu Silicone Taiwan Co., Ltd.

Hung Kuo Bldg. 11F-D, No. 167, Tun Hua N. Rd., Taipei, 10549 Taiwan, R.O.C. Phone : +886-(0)2-2715-0055 Fax : +886-(0)2-2715-0066

Shin-Etsu Silicone Korea Co., Ltd.

GT Tower 15F, 411, Seocho-daero, Seocho-gu, Seoul 06615, Korea Phone : +82-(0)2-590-2500 Fax : +82-(0)2-590-2501

- The data and information presented in this catalog may not be relied upon to represent standard values. Shin-Etsu reserves the right to change such data and information, in whole or in part, in this catalog, including product performance standards and specifications without notice.
- Users are solely responsible for making preliminary tests to determine the suitability of products for their intended use.
 Statements concerning possible or suggested uses made herein may not be relied upon, or be construed, as a guaranty of no patent infringement.
- The silicone products described herein have been designed, manufactured and developed solely for general industrial use only; such silicone products are not designed for, intended for use as, or suitable for, medical, surgical or other particular purposes. Users have the sole responsibility and obligation to determine the suitability of the silicone products described herein for any application, to make preliminary tests, and to confirm the safety of such products for their use.
- Users must never use the silicone products described herein for the purpose of implantation into the human body and/or injection into humans.

Shin-Etsu Singapore Pte. Ltd.

4 Shenton Way, #10-03/06, SGX Centre II, Singapore 068807 Phone : +65-6743-7277 Fax : +65-6743-7477

Shin-Etsu Silicones India Pvt. Ltd.

Unit No. 403A, Fourth Floor, Eros Corporate Tower, Nehru Place, New Delhi 110019, India Phone : +91-11-43623081-82 Fax : +91-11-43623084

Shin-Etsu Silicones (Thailand) Ltd.

7th Floor, Harindhorn Tower, 54 North Sathorn Road, Bangkok 10500, Thailand Phone : +66-(0)2-632-2941 Fax : +66-(0)2-632-2945

Shin-Etsu Silicone International Trading (Shanghai) Co., Ltd.

29F Junyao International Plaza, No.789, Zhao Jia Bang Road, Shanghai 200032, China Phone : +86-(0)21-6443-5550 Fax : +86-(0)21-6443-5868

Guangzhou Branch

Room 2409-2410, Tower B, China Shine Plaza, 9 Linhexi Road, Tianhe, Guangzhou, Guangdong 510610, China Phone : +86-(0)20-3831-0212 Fax : +86-(0)20-3831-0207

chemical-concepts.com 800.220.1966 410 Pike Road • Huntingdon Valley, PA 19006

- Users are solely responsible for exporting or importing the silicone products described herein, and complying with all applicable laws, regulations, and rules relating to the use of such products. Shin-Etsu recommends checking each pertinent country's laws, regulations, and rules in advance, when exporting or importing, and before using the products.
- Please contact Shin-Etsu before reproducing any part of this catalog.

Copyright belongs to Shin-Etsu Chemical Co., Ltd.

	The Development and Manufacture of Shin-Etsu Silicones are based on the following registered international quality and environmental management standards.	
	Gunma Complex ISO 9001 ISO 14001 (JCQA-0004 JCQA-E-0002)	
	Naoetsu Plant ISO 9001 ISO 14001 (JCQA-0018 JCQA-E-0064)	
JAB CM009	Takefu Plant ISO 9001 ISO 14001 (JQA-0479 JQA-EM0298)	

"Shin-Etsu Silicone" is a registered trademark of Shin-Etsu Chemical Co., Ltd. https://www.shinetsusilicone-global.com/